LAVORI DI COSTRUZIONE DEL DEPURATORE COMUNALE

PROGETTO DEFINITIVO

RELAZIONE SPECIALISTICA DI DIMENSIONAMENTO DEL PROCESSO DEPURATIVO

INDICE

- INTRODUZIONE
- DATI DI PROGETTO
- SOLLEVAMENTO E GRIGLIATURA GROSSOLANA
- GRIGLIATURA FINE
- DISSABBIATURA
- TRATTAMENTI BIOLOGICI: DENITRIFICAZIONE OSSIDAZIONE NITRIFICAZIONE
- DEFOSFATAZIONE CHIMICA
- SEDIMENTAZIONE FINALE
- DISINFEZIONE E MISURA DI PORTATA
- RICIRCOLO E SUPERO FANGHI
- ACCUMULO E ISPESSIMENTO FANGHI
- LETTI DI EMERGENZA FANGHI

INTRODUZIONE

L'impianto di depurazione al servizio di Calvatone sarà essenzialmente costituito da trattamenti primari di grigliatura e dissabbiatura seguiti da una sezione biologica ad "aerazione prolungata" integrata con un comparto specifico per la denitrificazione e un dosaggio chimico di coagulante per abbattere, qualora necessario, il Fosforo in eccesso e ridurre il trascinamento di sostanze sospese in uscita. Completerà l'impianto una sezione di disinfezione con acido peracetico e un comparto di accumulo e ispessimento del fango di supero.

Le acque di pioggia fino a 5 volte la portata nera media, saranno sollevate all'impianto, mentre l'eccedenza sarà sfiorata direttamente allo scarico, tramite un'apposito sfioratore previsto lungo il collettore fognario a monte dell'impianto. Una volta sottoposta ai trattamenti primari, una portata fino a 3 volte la media verrà inviata ai successivi trattamenti biologici mentre l'eccedenza sarà sfiorata allo scarico tramite un apposito stramazzo.

La configurazione impiantistica sarà di semplice concezione per consentire una facile gestione con costi limitati.

Il depuratore risulterà costituito dai seguenti comparti:

Linea acque:

- Sollevamento e grigliatura grossolana
- Grigliatura fine
- Dissabbiatura
- Denitrificazione
- Ossidazione / Nitrificazione
- Defosfatazione chimica
- Sedimentazione finale
- Disinfezione e Misura di portata

Linea fanghi:

- Ricircolo e supero fanghi
- Accumulo e ispessimento fanghi
- letti di essiccamento d'emergenza

DATI DI PROGETTO

A seguito della elaborazione dei dati provenienti dai campionamenti effettuati, si è verificato che i valori di concentrazione degli inquinanti risultano mediamente piuttosto bassi rispetto ai valori classici di letteratura.

Si è pertanto deciso di assumere, cautelativamente, quali valori di dimensionamento per il progetto dell'impianto, quelli di punta, con la sola eccezione per quelli relativi all'Azoto per i quali si opta di assumere le medie pesate delle punte.

In tal modo si adottano valori il più vicini possibile a quelli classici di letteratura mantenendosi in una posizione cautelativa rispetto ai valori reali riscontrati.

PARAMETRI DI INGRESSO	SIMBOLO	RELAZIONE	VALORE ATTUALE	VALORE FUTURO	UNITA' DI
INGINESSO			ATTOALL	TOTORO	MISURA
Abitanti equivalenti	A.E.		900	1.300	numero
Dotazione idrica	Dip		250	250	I/(ab*d)
Coefficiente di resa	Crf		0.85	0.85	numero
fognaria					
Tipo di fognatura			mista	mista	
BOD ₅ specifico	BOD ₅ i		49	49	gr/(ab*d)
SST specifico	SSTi		37,4	37,4	gr/(ab*d)
Fosforo specifico	P-PO4i		2	2	gr/(ab*d)
Azoto specifico	N-NO3i		13,3	13,3	gr/(ab*d)
Portata giornaliera	Qd	Qd=Abeq*Dip*Crf	191,3	276	m ³ /d
Portata media oraria	Q24	Q24=Qd/24	8	11,5	m ³ /h
Coefficiente di punta	Cpn		2	1,9	numero
nera					
Portata di punta nera	Qpn	Qpn=Cpn*Q24	16	22	m ³ /h
Portata di massima	Qmax	Qmax=5,0* Q24	40	58	m ³ /h
pioggia					2
Portata massima di	Qpb	Qpb=2,5*Q24	20	29	m ³ /h
pioggia al biologico	000		110 =	400.0	
COD totale	COD		112,5	162,3	kg/d
Concentrazione COD	CCOD	Ccon=1000*BOD/Qd	588	588	mg/l
BOD totale	BOD		44	63,5	kg/d
Concentrazione BOD	Свор	CBOD=1000*BOD/Qd	230	230	mg/l
SST totale	SST		33,7	48,6	kg/d
Concentrazione SST	Csst	Csst =1000*SST/Qd	176	176	mg/l
Fosforo totale	P-PO ₄		1,8	2,6	kg/d
Concentrazione fosforo	СР	CP=1000*P-PO4/Qd	9,4	9,4	mg/l
Azoto Kjeldahl totale	N-TKN		12	17,3	kg/d
Concentrazione azoto	CN	CN=1000*N-NO3/Qd	62,8	62,8	mg/l

PARAMETRI DI USCITA	SIMBOLO	Tab.2 del	VALORI DI	UNITA' DI
		Reg.Reg.	PROGETTO	MISURA
		24/3/2006	ASSUNTI	
		n.3		
Concentrazione BOD	Свор	40	40	mg/l
Concentrazione SST	Csst	60	60	mg/l
Concentrazione P	СР		4	mg/l
Concentrazione TKN	CTKN		25	mg/l
Concentrazione N-NH4+	C N-NH4+	15	15	mg/l
Concentrazione N-NO3	CN-NO3		10	mg/l

SOLLEVAMENTO E GRIGLIATURA GROSSOLANA

DESCRIZIONE

Il sollevamento iniziale dei liquami viene previsto allo sbocco finale della rete fognaria e viene effettuato tramite pompe sommerse.

Sono previste 3 pompe per la fase attuale, di cui 2 (1 + 1 riserva) per la portata nera e 1 unità più grande per la portata di pioggia. Per la fase futura si prevede di aggiungere una unità di riserva per la portata di pioggia.

PROGETTO

PARAMETRI DI	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
PROGETTO			attuale	futuro	MISURA
Portata media	Q ₂₄	Q24=Qd/24	8	11,5	m ³ /h
Portata di punta nera	Q_{pn}	Qpn=CpnxQ24	16	22	m ³ /h
Portata max di pioggia	Q _{max}	Qmax=5xQ24	40	58	m³/h
Prevalenza geodetica	Gi	=	7	7	m

Il valore della prevalenza geodetica da vincere comporta la scelta di un sollevamento a mezzo di elettropompe di tipo sommergibile aventi le seguenti caratteristiche di funzionamento:

CARATTERISTICHE	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
ELETTROPOMPE			attuale	futuro	MISURA
Tipologia		pompa			
		sommergibile			
Numero unità installate		=	3	4	n°
Numero unità attive		=	2	2	n°
Numero unità di riserva		=	1	2	n°
Portata massima unità 1	Q_1	attiva	14	14	m ³ /h
Portata massima unità 2	Q_2	riserva	14	14	m ³ /h
Portata massima unità 3	Q_3	attiva	40	40	m ³ /h
Portata massima unità 4	Q_4	riserva	40	40	m ³ /h
Prevalenza	G	=	8	8	m

In ingresso all'impianto, a monte del comparto di sollevamento, si prevede l'installazione di una griglia grossolana a pulizia manuale del tipo a cestello estraibile avente luce libera di passaggio di 40 mm. La griglia ha lo scopo di trattenere i corpi grossolani al fine di proteggere le pompe.

LOGICA DI FUNZIONAMENTO-STRUMENTAZIONE ED AUTOMAZIONE

Le pompe funzioneranno singolarmente ed il loro avviamento ed arresto sarà comandato da una serie di regolatori di livello a galleggiante. La logica di funzionamento prevista è ciclica al fine di ottimizzare l'invecchiamento delle pompe. La stazione di sollevamento viene prevista con un volume utile non inferiore a 2 m³ tale da assicurare una frequenza di intervento delle pompe non superiore a 10 avviamenti/ora.

MANUTENZIONE ED EMERGENZA

La presenza della pompa in posizione di riserva garantisce la continuità del funzionamento in caso di guasto ad una pompa attiva. Per agevolare le operazioni di movimentazione delle pompe e della griglia a cestello si prevede l'installazione di un paranco manuale.

GRIGLIATURA FINE

DESCRIZIONE

La grigliatura fine automatica viene effettuata mediante un rotostaccio che ha la funzione d'intercettare i corpi di dimensioni minori di 1,5 mm. Il liquame da trattare entra in una camera di alimentazione, costruita in modo da permettere al liquame stesso di distribuirsi su tutta la larghezza del cilindro filtrante. Le particelle, contenute nel liguame, vengono a contatto con il cilindro filtrante, il quale, girando lentamente, le porta verso l'esterno e vengono quindi eliminate da una lama raschiante che le fa cadere, tramite una tramoggia convogliatrice, in un cassonetto sottostante. L'acqua filtrata, passa all'interno del cilindro per uscire nuovamente attraverso la parte filtrante inferiore agendo così da pulitrice della superficie filtrante. E' previsto, comunque, un sistema di controlavaggio interno del cilindro filtrante per mezzo di ugelli spruzzatori. La parte filtrante si presenta ad ogni giro all'alimentazione priva di particelle e pronta a riprendere il ciclo. Una vasca di troppopieno che entra in funzione nel caso di temporaneo sovraccarico del rotostaccio, collegata al pozzetto di sollevamento, permetterà di trattare comunque tutta l'acqua entrante all'impianto. In caso di disservizio del rotostaccio, è prevista la possibilità di by pass mediante azionamento di apposite valvole a saracinesca. Sulla linea di by pass viene installata una griglia fine a cestello a pulizia manuale, in modo da garantire una buon livello di grigliatura anche durante le manutenzioni.

Dal punto di vista depurativo si ottengono rendimenti di rimozione dell'ordine del 5-10% per il BOD, 10% per gli SST, 10% per la carica batterica. Di tali rimozioni non verrà tenuto conto per i dimensionamenti delle sezioni successive.

PROGETTO

I parametri di dimensionamento adottati in fase di progetto sono i seguenti:

	PARAMETRI DI	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
	PROGETTO			attuale	futuro	MISURA
Р	ortata max di pioggia	Q_{max}	=	40	58	m ³ /h

Dai dati sopra esposti consegue un dimensionamento per la sezione di grigliatura fine avente le seguenti caratteristiche:

CARATTERISTICHE	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
GRIGLIA			attuale	futuro	MISURA
Numero linee di presenti	n		1	1	n°
Linea di by-pass			SI	SI	
Tipo di griglia installata		rotostaccio			
spaziatura	S	=	1,5	1,5	mm
Portata massima nominale	Q _{mn}	=	130	130	m³/h

LOGICA DI FUNZIONAMENTO- STRUMENTAZIONE ED AUTOMAZIONE

Il funzionamento del rotostaccio sarà asservito alla logica di marcia - arresto delle pompe di sollevamento. Il tamburo rotante riceverà il consenso per entrare in funzione da tali unità.

MANUTENZIONE ED EMERGENZA

Le valvole d'intercettazione poste a monte della linea garantiscono la possibilità d'isolare e d'intervenire sulla macchina per eventuali manutenzioni facendo passare il flusso nella griglia manuale di by pass.

DISSABBIATURA

DESCRIZIONE

La dissabbiatura ha la funzione di rimuovere sabbie e sostanze abrasive o pesanti al fine di salvaguardare danni alle macchine, intasamenti alle tubazioni e perdita di capacità utile nelle vasche dovuta a depositi di materiale sul fondo.

Nel dissabbiatore, tipo "Pista", avente forma circolare, apposite pale rotanti mantengono nel liquido un movimento rotatorio che, per forza centrifuga, favorisce la caduta della sabbia sul fondo.

Caratteristica di queste macchine è la flessibilità al variare della portata e la bassa perdita di carico idraulico.

PROGETTO

I parametri di dimensionamento adottati in fase di progetto sono i seguenti:

PARAMETRI DI	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
PROGETTO			attuale	futuro	MISURA
Portata max di pioggia	Q _{max}	=	40	58	m ³ /h

Dai dati di cui sopra si ottiene un dimensionamento per il dissabbiatore tipo "pista" avente le seguenti caratteristiche:

CARATTERISTICHE	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
DEL			attuale	futuro	MISURA
DISSABBIATORE					
Numero linee presenti	n	=	1	1	n°
Diametro vasca	D	=	2,0	2,0	m
Portata max nominale	Q	=	200	200	m ³ /h

LOGICA DI FUNZIONAMENTO- STRUMENTAZIONE ED AUTOMAZIONE

Per l'estrazione delle sabbie viene previsto un air-lift

L'aria necessaria viene fornita da una apposita soffiante con unità di riserva. La soffiante è asservita ad un temporizzatore che comanda l'estrazione periodica della sabbia. Una volta estratta, la sabbia viene convogliata ad un pozzetto di raccolta in cui si separa l'acqua in eccesso che ritorna in testa all'impianto. La sabbi così disidratate viene allontanate manualmente dagli operatori.

MANUTENZIONE ED EMERGENZA

In caso di emergenza o manutenzione della linea di dissabbiatura si prevede un canale di by-pass con apposite paratoie.

La soffiante presente in posizione di riserva garantirà sempre il funzionamento anche in caso di guasto alla soffiante titolare.

TRATTAMENTI BIOLOGICI:

DENITRIFICAZIONE E OSSIDAZIONE - NITRIFICAZIONE

DESCRIZIONE

Il processo biologico è tale da consentire la rimozione della sostanza carboniosa e la rimozione dell'azoto secondo lo schema integrato denitrificazione / ossidazione nitrificazione

I liquami, provenienti dalla disoleatura, giungeranno in un bacino combinato dove verranno sottoposti, dapprima, ad una agitazione lenta in condizioni anossiche (denitrificazione) quindi ad un processo di ossidazione nitrificazione. Il processo ossidativo avverrà in una vasca aerata, mediante insufflazione di corretti quantitativi di aria attraverso una batteria di diffusori disposti a tappeto sul fondo. In tal modo si rende possibile la rimozione delle sostanze organiche presenti nel liquame allo stato disciolto e colloidale. Ciò' avviene grazie ai processi di adsorbimento e bioflocculazione che determinano la formazione di fiocchi di fango attivo; questi "attirano" e captano le sostanze organiche presenti che vengono poi metabolizzate dalla flora batterica "attaccata" al fiocco stesso.

Nel contempo ha luogo l'ossidazione dell'azoto ammoniacale e organico a nitrati.

Il parametro fondamentale per la progettazione è, per questa sezione, il carico del fango, C_f , che rappresenta la quantità di sostanza organica applicata alla vasca (espressa in termini di Kg. di BOD_5 al giorno) per unità di peso del fango attivo (espresso come Kg. di MLSS). Bassi valori di Cf (fino a 0.1 Kg. $BOD_5/Kg.MLSS/g$) determinano notevoli rendimenti di rimozione del BOD e dell'azoto ammoniacale presenti ed in più favoriscono anche la pressoché completa mineralizzazione del fango attivo presente in vasca che, in tal caso, non ha più bisogno di ulteriori trattamenti inertizzanti.

Il processo biologico di nitrificazione avviene grazie allo sviluppo di una flora batterica aerobica di tipo autotrofo costituita essenzialmente da "nitrosomonas" e "nitrobacter". Le velocità di crescita del nitrosomonas e nitrobacter sono piuttosto basse e variano al variare della temperatura. Per questo, la nitrificazione del liquame si ottiene soltanto quando il tempo di ritenzione dei solidi (età del fango) in vasca di aerazione è sufficientemente elevato da permettere lo sviluppo dei batteri nitrificanti.

Per quanto attiene alla fase di denitrificazione, nello schema adottato, essa è costituita da una predenitrificazione con fonte di carbonio interna. La fonte di carbonio è in questo caso costituita dalla sostanza organica presente nei liquami in ingresso. Come è noto, il processo prende le mosse dallo sviluppo di una popolazione batterica di tipo facoltativo mantenuta in condizioni anossiche. In tali situazioni, venendo a mancare l'apporto esterno di ossigeno, la biomassa denitrificante è spinta a servirsi di quello contenuto nella molecola del nitrato, consentendo la riduzione di quest'ultimo ed azoto gassoso che viene ceduto all'ambiente atmosferico . I nitrati da ridurre vengono ricircolati in parte con i fanghi dal sedimentatore finale e in parte con il mixed liquor dalla zona di uscita della ossidazione/nitrificazione..

Al fine di ottimizzare la distribuzione del substrato carbonioso (specialmente nelle fasi di avviamento), si è previsto un sistema di alimentazione del liquame che consente di parzializzare il flusso mandandone a piacimento frazioni variabili nelle fasi di denitrificazione e ossidazione.

CALCOLI DI PROGETTO

Vengono di seguito svolti i calcoli relativi al sistema ossidazione - nitrificazione - denitrificazione secondo i criteri della reattoristica biochimica.

N.B. I calcoli sono sviluppati per le 2 situazioni : potenzialità attuale con 900 ab. eq. e potenzialità futura con 1300 ab. eq . I valori relativi alla potenzialità futura sono riportati tra parentesi.

Si considerano i seguenti limiti per l'azoto scaricato in acque superficiali:

PARAMETRI DI	SIMBOLO	LIMITE DI	VALORE ASSUNTO IN	UNITA' DI
USCITA		LEGGE	FASE DI PROGETTO	MISURA
		Regolamento		
		Regionale		
		24/03/2006		
		n.3 – Tab. 2		
Concentrazione	CBOD	40	40	mg/l
BOD				
Concentrazione	Csst	60	60	mg/l
SST				
Concentrazione	CN-NH4	25	15	mg/l
NH4				
Concentrazione	CN-NO3	n.t.	10	mg/l
NO3				
Concentrazione P	СР	n.t.	4	mg/l

I dati base di progetto sono:

PARAMETRI	SIMBOLO	VALORE	VALORE	UNITA' DI
D'INGRESSO		attuale	futuro	MISURA
Portata giornaliera	Qd	191,3	276	m ³ /g
BOD in ingresso alla	BOD ₁	44	63,5	kg/g
predenitrificazione				
Concentrazione BOD	CBOD ₁	230	230	mg/l
Azoto ammoniacale in	TKN₁	12	17,3	kg/g
ingresso alla				
predenitrificazione				
Concentrazione azoto	CTKN ₁	62,8	62,8	mg/l
ammoniacale				
Solidi sospesi totali	SSTI	33,7	48,6	kg/g
Concentrazione solidi	Cssti	176	176	mg/l
sospesi totali				

Si ipotizza di lavorare nelle seguenti condizioni:

PARAMETRI DI FUNZIONAMENTO PREFISSATI	SIMBOLO	VALORE attuale	VALORE futuro	UNITA' DI MISURA
Concentrazione degli SST in denitrificazione	Ca	3,5	4,5	kg/m ³

ossidazione-nitrificazione				
Concentrazione degli SST nel ricircolo fanghie	Cr	8	8	kg/m ³
Temperatura estiva	T _E	22	22	\mathcal{C}
Temperatura invernale	Tı	14	14	\mathcal{C}

Nelle pagine seguenti viene esposto il procedimento che porta al dimensionamento dei comparti di denitrificazione e ossidazione - nitrificazione nel rispetto dei valori imposti in uscita.

a)Impostazione generale

Poiché durante l'ossidazione biologica si ha una riduzione dei composti azotati, dovuta a sintesi batterica, pari al 5% del BOD₅ abbattuto, si ricava il TKN residuo:

$$(TKN)_R = (TKN)_1 - 0.05*(BOD_1 - BOD) = 9.94$$
 (14,34) kg/g pari a 52 (52) mg/l

Avendo assunto come dato di progetto una concentrazione di 15 (15) mg/l. di azoto ammoniacale in uscita, la frazione da nitrificare risulta:

$$TKN_{RN} = TKN_R - C_{N-NO3} * Q_d * 10^3 = 7,07$$
 (10,20) kg/g pari a 37 (37) mg/l

Essendo, stata assunta, per i nitrati in uscita la concentrazione di 10 (10) mg/l, la frazione da denitrificare diviene:

$$TKN_{RD} = TKN_{RN} - C_{N-NO_3} * Q_d * 10^3 = 5,16$$
 (7,44) kg/g pari a 27 (27) mg/l

b) Denitrificazione

I dati di progetto del comparto sono i seguenti:

PARAMETRI DI	SIMBOLO	VALORE	VALORE	UNITA' DI
PROGETTO		attuale	futuro	MISURA
BOD in ingresso alla predenitrificazione	BOD₁	44	63,5	kg/g
Concentrazione BOD	CBOD ₁	230	230	mg/l
Azoto nitrico da rimuovere in denitrificazione	TKN _{RD}	5,2	7,4	kg/g
Concentrazione azoto nitrico da rimuovere	CTKN _{RD}	27	27	mg/l

Il procedimento che porta al dimensionamento di tale comparto è il seguente:

1) Calcolo della velocità di denitrificazione alla temperatura di esercizio prevista:

$$(V_D)_T = (V_D)_{20} * K^{(T-20)}$$

in cui:

• (V_D)_T= velocità di denitrificazione espressa in kgN-NO₃/kgSST*h alla temperatura di progetto.

• (V_D)₂₀=0,0021 kgN-NO₃/kgSST*h

• K=1.15℃ ⁻¹

T=14℃ (inverno) - 22℃ (estate)

velocità di denitrificazione a 20℃

coefficiente di correzione della temperatura

temperatura. di p rogetto

2) Nota la velocità di denitrificazione e la quantità di azoto da denitrificare si ricava la biomassa necessaria in denitrificazione:

$$(X_D)_T = \frac{(TKN)_{RD}}{24*(V_D)_T}$$

dove:

- (XD)_T = biomassa in denitrificazione espressa in Kg SST alla temperatura di progetto.
- TKN_{RD} = frazione denitrificata espressa in kg SST/d.
- 3) Avendo prefissato la concentrazione Ca di SST in vasca di ossidazione il volume teorico del reattore di denitrificazione risulta

$$(Vol_D)_T = \frac{(X_D)_T}{Ca}$$

La tabella che segue riassume i valori di cui ai punti 1), 2), 3) nel caso estivo ed invernale:

(valori futuri tra parentesi)

PARAMETRI	SIMBOLO	ESTATE T=T _E	INVERNO T=T _I	UNITA' DI MISURA
Velocità di	$(V_D)_T$	0,0028	0,0009	kgN-NO₃/kgSST*h
denitrificazione				
Biomassa di	$(X_D)_T$	77,5 (112)	234	kg SST
denitrificazione			(338,3)	_
Volume di	(Vol _D) _T	22 (25)	67 (75)	m^3
denitrificazione				

In definitiva viene assunto un volume utile di 80 m³.

La miscelazione della sospensione liquame-fango attivo nitrificato viene assicurata da un elettroagitatore a basso numero di giri per garantire le condizioni anossiche.

Durante il processo si liberano mediamente 2,85 kg.O₂ per 1 kg. di azoto nitrico ridotto (Les eaux di G. Martin).

Considerando un consumo di 0,80 kg. O₂ per 1 kg di BOD₅ abbattuto, si avrebbero complessivamente, a livello teorico:

$$BOD_{RD} = \frac{2,85}{0,80} * TKN_{RD} = 18,6$$
 (26,8) pari a 97 (97) mg/l

dove BOD_{RD} rappresenta i kg. di BOD_5 abbattuti in denitrificazione giornalmente, pari a circa 3,60 Kg. BOD_5 /Kg. $N-NO_3$ rimosso.

Di conseguenza, in ingresso al comparto di ossidazione - nitrificazione si avrà una quantità di BOD₅ pari a:

$$BOD_2 = BOD_1 - BOD_{RD} = 25,4$$
 (36,7) pari a 133 (133) mg/l

c) ossidazione - nitrificazione

I dati di progetto per il comparto di nitrificazione diventano i seguenti:

PARAMETRI DI	SIMBOLO	VALORE	VALORE	UNITA'
PROGETTO		attuale	futuro	DI
				MISURA
BOD in ingresso	BOD ₂	25,4	36,7	kg/g
alla nitrificazione				
Concentrazione	CBOD ₂	133	133	mg/l
BOD				
Azoto totale da	TKN _{RN}	7,1	10,2	kg/g
rimuovere in				
nitrificazione				

Il procedimento che porta al dimensionamento di tale comparto è il seguente:

1) Calcolo della velocità di nitrificazione secondo la formula generale:

$$(V_N)_T = (V_N)_{20} * \frac{C_{TKN}}{K_{TKN} + C_{TKN}} * \frac{OD}{K_o + OD} * \vartheta^{(T-20)}$$

in cui:

- (V_N)_T= velocità di nitrificazione espressa in kgN-NH₄/kgSST*h alla temperatura di progetto.
- (Vn)20 = velocità massima di nitrificazione alla temperatura di 20℃ che risulta pari a 100-150 gr. NTK/kg. SST*h., ma viene assunto prudenzialmente pari a 80 gr. NTK/kg.SST*h.
- C_{TKN} = concentrazione di azoto totale secondo Kjieldal in vasca di nitrificazione che coincide con il valore di azoto ammoniacale in uscita assunto in fase di progetto pari a 15 mg/l.
- OD = concentrazione di ossigeno disciolto mantenuto in vasca = 2 mg/l.
- K_{TKN} = costante di semisaturazione relativa all'ammoniaca pari a 1 mg*N/1
- K₀ = costante di semisaturazione relativa all'ossigeno disciolto pari a 1 mg*N/1
- θ = coefficiente di correzione relativo alla temperatura pari a 1,12
- T = temperatura di progetto.
- 2) Calcolo della frazione "F" di batteri nitrificanti sulla biomassa totale:

$$F = \frac{1}{1 + \frac{Y}{Y_{N}} * \frac{C_{BOD_{2}} - C_{BOD}}{C_{TKN}}}$$

in cui:

- F = numero puro che esprime la percentuale di batteri nitrificanti sulla biomassa totale.
- CBOD₂ = concentrazione di BOD₅ in ingresso all'ossidazione nitrificazione = 133 mg/l.
- CBOD = concentrazione di BOD in uscita dal biologico assunta in fase di progetto = 25 mg/l
- C_{TKNRN} = concentrazione di azoto rimosso in ossidazione nitrificazione espresso in mg/l
- Y_N = coefficiente di crescita cellulare dei batteri nitrificanti = 0,24 gSST/g TKN nell'ipotesi che nella biomassa gli SSV costituiscano il 70% degli SST.
- Y = coefficiente di crescita dei batteri eterotrofi =0,88 gSST/g BOD₅.
- 3) La biomassa necessaria in nitrificazione vale:

$$(X_N)_T = \frac{(TKN)_{RN}}{24*(V_N)_T*F}$$

dove:

- $(XN)_T$ = biomassa in nitrificazione espressa in Kg SST.
- TKN_{RN} = frazione nitrificata espressa in kg SST/d.
- 4) Avendo prefissato la concentrazione X_{RD} di SST in vasca di ossidazione il volume teorico del reattore di ossidazione nitrificazione risulta

$$(Vol_N)_T = \frac{(X_N)_T}{X_{RD}}$$

La tabella che segue riassume i valori di cui ai punti 1), 2), 3), 4) nel caso estivo ed invernale:

(valori futuri tra parentesi)

PARAMETRI	SIMBOLO	ESTATE	INVERNO	UNITA' DI
		$T=T_{E}$	T=T _I	MISURA
Velocità di nitrificazione	$(V_N)_T$	63	25	gN-NH₄/kgSST*h
frazione di batteri	F	8	8	%
nitrificanti				
Biomassa di	$(X_N)_T$	124 (179)	311 (450)	kg SST
nitrificazione				
Volume di nitrificazione	$(Vol_N)_T$	35,5 (40)	89 (100)	m ³

In definitiva viene assunto un volume utile di circa $120 \ m^3$, in modo da garantire carichi del fango sufficientemente bassi, compatibili col processo ad aerazione prolungata.

d) Verifica del rendimento di abbattimento

Il BOD₅ rimosso in ossidazione - nitrificazione risulta:

$$BOD_{RN} = BOD_2 - C_{BOD} * Q_d * 10^3 = 23$$
 (33) kg/g pari a 120 (120) mg/l

Il rendimento di abbattimento di BOD₅ ottenuto nel comparto ossidativo risulta essere:

$$\eta_b = \frac{BOD_{RN}}{BOD_2} * 100 = 90 \%$$

con un carico volumetrico pari a:

$$CV = \frac{BOD_2}{Vol_N} = 0.21$$
 (0.30) kg BOD₅/m³*g

ed un carico del fango di:

$$CF = \frac{CV}{c_R} = 0,060 \text{ (0,068) kg BOD}_5/\text{kg SST *g}$$

Tali valori del carico del fango sono sufficientemente bassi per garantire rendimenti di rimozione del BOD e dell'NH4-N anche superiori a quelli previsti con il sistema di ossidazione proposto.

e) Determinazione della portata di ricircolo

Il rapporto di ricircolo che garantisce la denitrificazione dei nitrati formatisi in vasca di aerazione per ossidazione dell'azoto organico e dell'ammoniaca presenti nel liquame d'ingresso è dato dalla seguente relazione:

$$r = \frac{(TKN)_1 - (TKN) - (N - NO_3) - 0.05 * (BOD_1 - BOD)}{(N - NO_3)} = 2.7 (2.7)$$

La portata di ricircolo risulta essere:

$$Q_m = r * Q_{24} = 21,6$$
 (31) m³/h pari al 270 (270) % della Q₂₄

La portata dei fanghi che deve essere ricircolata dal sedimentatore secondario tale da mantenere la concentrazione prestabilita di fango attivo Ca nella vasca di ossidazione risulta essere:

$$Q_r = Q_{24} * \frac{C_a}{C_r - C_a} = 6.2 \text{ (14,8) m}^3/\text{h pari al 78 (128) } \% \text{ della } Q_{24}$$

Poiché Qr risulta maggiore di Qrd ne consegue che il ricircolo dei fanghi non è sufficiente a garantire la denitrificazione. Per questo motivo oltre a ricircolare la Qrd dal sedimentatore secondario si provvederà ad effettuare un ricircolo di miscela aerata, prelevata a valle del comparto di ossidazione - nitrificazione, pari a:

$$Q_{rd} = Q_{rn} - Q_r = 15,4$$
 (16,2) m³/h

Il ricircolo del mixed liquor verrà garantito da una elettropompa sommersa avente portata di circa 20 m3/h e da una unità uguale di riserva.

f) Produzione dei fanghi di supero

La produzione complessiva di fango biologico di supero in tale comparto è data dal contributo delle sezioni di denitrificazione e ossidazione - nitrificazione.

Si vuol far notare che la produzione di fango di supero in denitrificazione, per quanto più contenuta rispetto a quella dovuta alla fase ossidativa vera e propria, non può tuttavia essere ritenuta nulla. In letteratura viene considerata una crescita di fango Y_D pari a 0,7 kg SST/kg NO₃-N rimosso oppure pari a 0,155 \pm 0,175 kg SST/kg BOD se rapportata al BOD rimosso (quando viene utilizzato carbonio interno il suo consumo può essere stimato in 3,5 \pm 4 kg BOD/kg NO₃-N rimosso). In definitiva:

$$X_{SD} = Y_D * TKN_{RD}$$

in cui:

•
$$Y_D = 0.7$$

fattore di crescita della biomassa denitrificante

In ossidazione - nitrificazione la produzione di fango di supero è data dalla somma di due contributi relativi alla popolazione eterotrofa e nitrificante come indicato nella seguente formula:

$$X_{SN} = (Y * BOD_{RN} - K_d * X_N * (1 - f)) + (Y_N * TKN_{RN} - (k_d)_N * X_N * f)$$

in cui:

 Y = 0,96 ossidante coefficiente di crescita della biomassa

BOD_{RN} =

 K_d = 0,043 ossidazione

X_N =

• f =

• $Y_N = 0.24 \text{ kg SST/kg TKN}$

• TKN_{RN} =

• $(K_d)_N = 0.05 d^{-1}$

BOD rimosso in nitrificazione

coefficiente di scomparsa batterica in

biomassa totale presente in nitrificazione

frazione biomassa nitrificante sulla biom. totale

fattore di crescita biomassa nitrificante

Azoto nitrificato

coefficiente di scomparsa batterica in nitr.

Alle quantità sopra si deve aggiungere la produzione di fango di supero dovuto al materiale inerte assunto per ipotesi pari al 33% degli SST ovvero:

La produzione complessiva di fango di supero biologico è riassunta nella tabella che segue:

PARAMETRI	SIMBOLO	VALORE attuale	VALORE futuro	UNITA' DI MISURA
Fango di supero in denitrificazione	X _{SD}	3,6	5,2	kg SST/d
Fango di supero in ossidazione - nitrificazione	X _{SN}	5,5	10,9	kg SST/d
Fango di supero da materiale inerte	X _{SIN}	11,1	16	kg SST/d
Fango totale di supero X _{SUP} = X _{SD} +X _{SN} +X _{SIN}	X _{SUP}	20,2	32,1	kg SST/d

g) Verifica dell'età del fango

L'età del fango complessiva del sistema di predenitrificazione, nitrificazione - ossidazione è pari a:

$$\theta = \frac{(Vol_N + Vol_D) * C_a}{X_{SUP}} = 76,5 (56) g$$

h) Verifica dei tempi medi di permanenza idraulica

Denitrificazione:

$$t_D = \frac{Vol_D}{Q_{24}} = 10 \text{ (7) h}$$

Ossidazione - nitrificazione

$$t_N = \frac{Vol_N}{Q_{24}} = 15 \text{ (10,4) h}$$

i) Verifica della rimozione del fosforo

Tenendo conto che nel trattamento biologico di denitrificazione, ossidazione - nitrificazione si ha una riduzione di P pari al 1% del BOD₅ abbattuto:

$$P_{R-DNO} = 1\% * (BOD_{RNI} + BODP_{RD}) = 0.41 (0.6) \text{ kg/d} = 2.17 (2.17) \text{ mg/l}$$

all'uscita è lecito attendersi un tenore residuo pari a:

$$P_{II} = P_{I} - P_{R-DNO} = 1,4$$
 (2) kg/d

con concentrazione di:

$$C_{P-U} = \frac{P_U}{Q_d} * 10^3 = 7,2 (7,2) \text{ mg/l}$$

maggiore di 4 mg/l imposti, arbitrariamente, come parametro di uscita. Questo rende necessario operare una defosfatazione tale da abbattere 3,2 mg/l ovvero 0,6 (0,9) kg/d di fosforo per rientrare nei limiti di legge.

I) Richiesta di ossigeno

La richiesta di O₂ risulta essenzialmente dalla somma delle parti necessarie alla respirazione attiva, alla respirazione endogena ed alla nitrificazione.

Il calcolo dell'ossigeno necessario al processo viene effettuato applicando la seguente formula:

$$AOR = p * a * BOD_{RN} + b * X_N + p * c * TKN_{RN}$$

in cui:

- AOR (Actual Oxigen Rate) = fabbisogno di ossigeno espresso in kgO₂/d in condizioni operative.
- p = coefficiente moltiplicativo che tiene conto delle punte di carico assunto pari a Cpn=1,5.
- a = coefficiente che indica la richiesta di ossigeno per unità di peso di BOD₅ abbattuto, assunto pari a 0,5 kg O₂/kg.BOD₅.
- BOD_{RN} = BOD₅ rimosso in ossidazione nitrificazione espresso in Kg/d.
- b = coefficiente che indica la richiesta di ossigeno per la respirazione endogena di 1 kg di fango, variabile con la temperatura secondo la legge:

$$b_T = b_{20} * 1,084^{(T-20)}$$

con $b_{20} = 0.1 \text{ kgO}_2/\text{kgSST*d}$.

- X_N = quantità di SST presenti in vasca espressi in kgSST/d.
- c = coefficiente che indica la richiesta di ossigeno per nitrificare 1 kg. di azoto, assunto pari a 4,6 kg O₂/kg TKN.
- TKN_{RN} = quantità di azoto rimossa in nitrificazione espressa in Kg./d.

La tabella che segue mostra il fabbisogno orario di ossigeno $(\frac{AOR}{24})$ calcolato nel periodo estivo ed invernale per condizioni di carico normale (p=1) e di punta (p=1,5):

(valori futuri tra parentesi)

PARAMETRI	SIMBOLO	ESTATE	INVERNO	UNITA' DI
		T=T _E	T=T _I	MISURA
Richiesta totale di O ₂ in regime normale	AOR ₂₄	4,3 (5,8)	3,1 (4,3)	kgO ₂ /h
Richiesta totale di O ₂ in regime di punta	AORp	5,2 (7,1)	4,0 (5,6)	kgO ₂ /h

Per la scelta degli aeratori è necessario riferire il fabbisogno di ossigeno AOR alle condizioni Standard SOR (Standard Oxigen Rate), tramite la relazione:

$$SOR = \frac{AOR}{\alpha * \frac{\beta * Csw - Co}{Cs} * \vartheta^{(T-20)}}$$

dove:

• α,β sono coefficienti correttivi che tengono conto delle caratteristiche del liquame trattato (salinità,...) e dell'aria pura (differente diffusione, differente grado di saturazione di ossigeno,...). Si assume α =0,9, β =0,95.

Csw = concentrazione ossigeno disciolto alla saturazione in acqua pulita alle condizioni di temperatura e pressione di esercizio. Si ricorda che quest'ultima varia con la pressione idrostatica in rapporto alla posizione della bolla d'aria nel bacino di aerazione

- Co = concentrazione ossigeno disciolto in condizioni di esercizio uguale a 2 mg/l.
- Cs = concentrazione ossigeno disciolto alla saturazione alla temperatura di 20℃ ed alla pressione di 760 mm Hg; viene assunta pari a 9,08 mg/l.
- θ = coefficiente che tiene conto della temperatura pari a 1,024.
- T = temperatura del liquame in condizioni di esercizio.

La tabella che segue mostra il fabbisogno orario di ossigeno standard $(\frac{SOR}{24})$ ricavato dall' AOR di cui sopra:

(valori futuri tra parentesi)

PARAMETRI	SIMBOLO	ESTATE	INVERNO	UNITA' DI
		T=T _E	$T=T_1$	MISURA
Concentrazione O ₂	Csw	8,63	8,97	mg/l
disciolto alla saturazione				
Richiesta totale di O ₂	SOR ₂₄	10,8 (14,4)	9,0 (12,4)	kgO ₂ /h
standard in regime				
normale				
Richiesta totale di O ₂	SORp	13,0 (17,8)	11,6 (16,2)	kgO ₂ /h
standard in regime di				
punta				

SISTEMA DI DIFFUSIONE A TAPPETO POROSO

Sapendo che 1 m³ di aria contiene in condizioni normali 0,28 kg di O_2 ed adottando un sistema di trasferimento mediante diffusione a tappeto poroso con rendimento assunto pari a 25%, si ottiene il seguente fabbisogno di aria $(\frac{SOR}{0.28*r\%})$:

(valori futuri tra parentesi)

PARAMETRI	SIMBOLO	ESTATE	INVERNO	UNITA' DI
		T=T _E	$T=T_1$	MISURA
Fabbisogno totale di aria	Qa ₂₄	153,6	128,2 (176,7)	Nm ³ /h
in regime normale		(207,7)		
Fabbisogno totale di aria	Qa _P	186,3	165,8 (230,9)	Nm ³ /h
in regime di punta		(255,0)	, , ,	

Verrà installato un sistema di diffusori porosi con membrana elastica antiintasamento, disposti a sul fondo vasca.

Per l'alimentazione del sistema di diffusione dell'aria verranno installate 2 soffianti a lobi (di cui una di riserva) aventi ciascuna una portata pari a circa 260 Nm3/h.

LOGICA DI FUNZIONAMENTO-STRUMENTAZIONE ED AUTOMAZIONE

Il funzionamento delle soffianti è governato da un misuratore d'ossigeno disciolto installato nella vasca .

L'elettroagitatore presente nella linea di denitrificazione funzionerà in continuo (24h su 24h).

MANUTENZIONE ED EMERGENZA

La presenza di una soffiante in posizione di riserva garantisce il funzionamento in continuo del circuito d'aerazione.

In caso di emergenza per manutenzione della linea di denitrificazione si prevede un canale di by-pass con apposite paratoie.

DEFOSFATAZIONE CHIMICA

DESCRIZIONE

La rimozione controllata del fosforo attraverso precipitazione chimica è un processo affidabile e ad alta resa.

In particolare, se l'impianto viene dotato del processo di rimozione del fosforo cosiddetto in simultanea, con l'aggiunta di coagulante (sali di ferro o di alluminio) subito a monte della vasca di ossidazione biologica, si ha che il continuo ricircolo di fango e l'effetto di miscelazione dovuto alla presenza del sistema di aerazione, comportano una sensibile riduzione del consumo dei reattivi rispetto ad altri processi di defosfatazione chimica, quali la postprecipitazione, che presentano anche costi impiantistici aggiuntivi.

PROGETTO

Si considerano i seguenti limiti per il fosforo scaricato in acque superficiali:

PARAMETRI DI USCITA	SIMBOLO	VALORE DI	UNITA' DI
		PROGETT	MISURA
		0	
Concentrazione P	СР	4	mg/l

I parametri di dimensionamento adottati in fase di progetto sono i seguenti:

PARAMETRI DI	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
PROGETTO			attuale	futuro	MISURA
Portata giornaliera	Q_d	=	191,3	276	m ³ /d
Fosforo entrante nei	Pı	=	1,8	2,6	kg/d
trattamenti biologici					
Concentrazione	C _{PI}	=	9,4	9,4	mg/l
fosforo entrante					
BOD rimosso nei	BOD_R	=	41,5	59,8	kg/d
trattamenti biologici					
Fosforo rimosso nei	P_R	P _R =1%*BOD _R	0,4	0,6	kg/d
trattamenti biologici					

Tenendo conto che nel trattamento biologico di denitrificazione, ossidazione - nitrificazione (v. norme UIDA) si ha una riduzione di P pari al 1% del BOD₅ abbattuto, all'uscita è lecito attendersi un tenore residuo pari a:

$$P_{rr} = P_r - P_p = 1.4$$
 (2) kg/d

 $P_{\rm U} = P_{\rm I} - P_{\rm R} {=} {\rm 1,4~(2)~kg/d}$ al quale corrisponde una concentrazione di:

$$C_{PU} = \frac{P_U}{Q_d} * 10^3 = 7.2 (7.2) \text{ mg/l}$$

maggiore dei 4 mg/l prefissati come limite d'uscita.

Per rispettare le condizioni di progetto sarà necessario rimuovere mediante precipitazione chimica una quantità di fosforo pari a:

$$C_{PR-DEF} = C_{PU} - C_P = 3.2 \text{ mg/l ovvero } P_{R-DEF} = \frac{C_{PR-DEF} * Q_d}{10^3} = 0.6 \text{ (0,9) kg/d.}$$

con una resa di abbattimento pari a:

$$\eta = \frac{C_{PR-DEF}}{C_{PU}} * 10^3 = 44 \%$$

a) Defosfatazione chimica

L'abbattimento dei fosfati viene effettuato dosando direttamente nel bacino di ossidazione una soluzione di cloruro ferrico (FeCl₃).

Il relativo dosaggio si ottiene dalle seguenti considerazioni derivanti dalla stechiometria della reazione di precipitazione del fosfato con cloruro ferrico:

$$FeCl_3 + H_3PO_4 = FePO_4 + 3HCl$$

Essendo il peso atomico del ferro pari a 56 e quello del fosforo pari a 31, il rapporto tra i due pesi è pari a $\frac{56}{31}$ = 1,8. Il dosaggio teorico risulta di 1,8 kg di ferro per 1 kg di fosforo da abbattere al quale vanno aggiunti circa 10mg/l di ferro per la formazione dell'idrossido. Occorrerà pertanto dosare ferro nella misura di:

$$kg_Fe = 1.8 * P_{R-DEF} + \frac{10 * Q_d}{10^3} = 3 (4.4) \text{ kg/d}$$

Essendo il peso molecolare del cloruro ferrico pari a 56+3*35=161 il rapporto con il peso atomico del ferro vale $\frac{161}{56}=2,875$. Ne consegue un dosaggio di 2,875 kg di FeCl₃ per 1 kg di ferro ovvero:

$$kg_FeCl_3 = 2,875*kg_Fe=8,7$$
 (12,6) kg/d

Infine essendo il cloruro ferrico presente in soluzione commerciale al 41% il dosaggio della soluzione sarà:

$$Soluzione = \frac{kg_FeCl_3}{0.41} = 21,2 (30,6) \text{ kg/d}$$

Essendo il peso specifico del cloruro ferrico in soluzione al 41% pari a 1,42 gr/l si ottiene una portata giornaliera di

$$Q_{d} - FeCl_{3} = \frac{FeCl_{3}}{1,42} = 14,9 \text{ (21,6) I/d}$$

che corrisponde ad una portata oraria di:

$$Q_{24} - FeCl_3 = \frac{Q_d - FeCl_3}{24} = 0,6 (0,9) \text{ l/h}$$

Prevedendo un serbatoio di stoccaggio di 1 m3 si avrà un periodo di autonomia di 67 (46) giorni.

Il dosaggio verrà effettuato da una pompa dosatrice, a portata regolabile automaticamente con asservimento al misuratoe di portata e avente una portata max di circa 3 l/h . Viene prevista una unità di riserva.

La miscelazione della sospensione liquame viene assicurata dal sistema di diffusione dell'aria presente in vasca di ossidazione.

b) Produzione dei fanghi di supero

La produzione di fango chimico che si ottiene quando si abbatte il fosforo per via chimica si valuta per via stechiometrica dalla reazione di precipitazione di cui sopra e per l'eccesso della reazione di precipitazione del ferro come idrossido, data l'alcalinità dell'acqua. Poiché il peso molecolare del fosfato di ferro è pari a:

$$FePO_4 = 56 + 31 + 4 * 16 = 151$$

La quantità di fosforo da rimuovere è di:

$$X_{FePO_4} = 151 * \frac{P_{R-DEF}}{31} = 3 \text{ (4,3) kg/d}$$

A tale quantità va aggiunta quella relativa all'idrossido ferrico prodotto dalla differenza del dosaggio di ferro reale e quello stechiometrico. Essendo il peso molecolari pari a:

$$Fe(OH)_3 = 56 + 3 + 3 * 16 = 107$$

si ottiene:

$$X_{Fe(OH)_3} = 107 * \frac{10 * Q_d / 10^3}{56} = 3.7 \text{ (5,3) kg/d}$$

Pertanto il fango chimico prodotto giornalmente sarà pari a:

$$X_{SDEF} = X_{FePO4} + X_{Fe(OH)_2} = 6.7 (9.6) \text{ kg/d}$$

Questa quantità di fango chimico è da aggiungersi alla quantità di fango prodotto nelle altre sezioni.

LOGICA DI FUNZIONAMENTO - STRUMENTAZIONE ED AUTOMAZIONE

Normalmente la portata delle pompe dosatrici di FeCl₃ sarà regolata sul fabbisogno medio giornaliero in modo da garantire un corretto consumo di reagente.

Essendo le pompe dotate di un regolatore elettronico incorporato, sarà possibile anche poter asservire il dosaggio al segnale 4-20 mA proveniente dal misuratore di portata del refluo trattato.

MANUTENZIONE ED EMERGENZA

La presenza di una pompa dosatrice in posizione di riserva garantirà il funzionamento a regime anche in caso di guasto ad una pompa.

SEDIMENTAZIONE FINALE

DESCRIZIONE

La sedimentazione secondaria o finale ha seguenti funzioni:

- funzione di chiarificazione ovvero rimozione degli SST al fine di ottenere un effluente limpido.
- funzione di accumulo ed ispessimento del fango da ricircolare, in parte, nel ciclo biologico e da allontanare come fango di supero.

In particolare la sedimentazione finale statica ben si presta nei piccoli impianti per il basso costo di manutenzione .

PROGETTO

Il trattamento di sedimentazione finale verrà effettuato in una vasca a base quadrata con tramoggia a marcata pendenza, tale da garantire il deposito dei fanghi sul fondo.

I parametri di dimensionamento adottati in fase di progetto sono i seguenti:

PARAMETRI DI	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
PROGETTO			attuale	futuro	MISURA
Portata di punta nera	Q_{pn}	=	16	22	m ³ /h
Portata massima pioggia	Q_{mpb}	=	20	29	m ³ /h
al biologico	-				
Portata di ricircolo fanghi	Q_r	=	6,2	14,8	m ³ /h
Conc. fanghi in	Ca	=	3,5	4,5	kgSST/m ³
ossidazione					
Conc. fanghi di ricircolo	C _r	=	8	8	kgSST/m ³

Si impongono i seguenti parametri:

Carico idraulico a Q_{pn} ci_{pn} = 0,8 m/h

• Carico idraulico a Q_{mpb} ci_{mpb} = 1,2 m/h

• Tempo di permanenza a Q_{pn} $T_{pn} = 3 h$

• Flusso solido a Q_{pn} + Q_r $F_s = 5.5 \text{ kgSS/m}^2 \text{*h}$ • Portata allo sfioro a Q_{pn} $q_{pn} = 10 \text{ m}^3/\text{m} \text{*h}$

Da tali parametri tramite si ricava:

 m^2

• Perimetro di sfioro utile min. $2p = \frac{Q_{pn}}{q} = 1,4 (2,2) \text{ m}$

• Superficie utile min. $S = \max \left(\frac{Q_{pn}}{ci_{pn}}; \frac{Q_{mpb}}{ci_{mpb}}; \frac{Q_{pn} + Q_r}{F_s} \times c_a \right) = 18,5 (30)$

Volume utile min. $V = Q_{pn} \times T_{pn} = 42,6 (66) \text{ m}^3$

Dai risultati dei calcoli sopra esposti si determina un dimensionamento per la sezione di sedimentazione finale avente le seguenti caratteristiche:

CARATTERISTICHE SEDIMENTATORE FINALE	SIMBOLO	RELAZIONE	VALORE attuale	VALORE futuro	UNITA' DI MISURA
Numero linee presenti	n		1	1	n°
Tipologia	11	statico		· ·	11
Lunghezza	I	=	5,5	5,5	m
Larghezza	b	=	5,5	5,5	m
Altezza d'acqua utile	h	=	3	3	m
media					
Carico idraulico a Q _{pn}	ci _{pn}	=	0,5	0,7	m/h
Carico idraulico a Q _{mpb}	Ci _{mpb}	=	0,6	1,0	m/h
Tempo di permanenza a	T _{pn}	=	6,4	4,1	h
Q_{pn}	·				
Flusso solido a Q _{pn} + Q _r	Fs	=	3,4	5,5	kgSS/m ² *
					h
Portata allo sfioro a Q _{pn}	q _{pn}	=	1,8	2,8	m³/m*h

ESTRAZIONE FANGHI DI RICIRCOLO E SUPERO

Come precedentemente calcolato (riferimento trattamenti biologici), per mantenere una concentrazione del fango nel biologico pari a 3,5 (4,5) kg/m³ è necessario un ricircolo di fango, allo 0,8%, pari a 6,2 (14,8) m³/h.

Inoltre, come calcolato nei capitoli precedenti , dal fondo del sedimentatore finale dovrà essere allontanata una quantità di fango di supero pari a 26,9 (41,7) kg/d che, alla concentrazione 0,8 %, ovvero 8 kg/m³, comporterà una portata volumetrica pari a 3,4 (5,2) m³/d.

La produzione complessiva di fango di supero è riassunta nella tabella che segue:

PARAMETRI	SIMBOLO	VALORE attuale	VALORE futuro	UNITA' DI MISURA
Fango di supero in denitrificazione	X_{SD}	3,6	5,2	kg SST/d
Fango di supero in ossidazione - nitrificazione	X _{SN}	5,5	10,9	kg SST/d
Fango di supero da materiale inerte	X _{SIN}	11,1	16	kg SST/d
Fango di supero dalla de fosfatazione chimica	X _{SDEF}	6,7	9,6	kg SST/d
Fango totale di supero X _{SUP} = X _{SD} +X _{SN} +X _{SIN} +X _{SDEF}	X _{SUP}	26,9	41,7	kg SST/d

A fianco del sedimentatore verrà realizzato un pozzetto nel quale confluiranno i fanghi, dal fondo del sedimentatore stesso, tramite apposita tubazione. La tubazione terminerà nel pozzetto con una valvola telescopica che, opportunamente regolata, sarà in grado di garantire una concentrazione pressoché costante dei fanghi in uscita, intorno a 8 kg/m³ Nel pozzetto verranno installate complessivamente 2 elettropompe sommergibili di ricircolo (di cui una di riserva). Le pompe di ricircolo saranno asservite a regolatori di livello e l'estrazione dei fanghi di supero sarà effettuata mediante "spillamento" dal circuito di ricircolo, tramite l'apertura di un'apposita valvola a saracinesca, che consentirà di convogliare i fanghi spillati al serbatoio di accumulo e ispessimento. Un misuratore magnetico di portata verrà inserito nella tubazione dei fanghi di ricircolo

MANUTENZIONE ED EMERGENZA

La presenza di una pompa di ricircolo in posizione di riserva garantirà il funzionamento a regime anche in caso di guasto ad una pompa. Le pompe saranno dotate di attrezzatura di sollevamento tale da permettere l'estrazione in caso di guasto.

DISINFEZIONE E MISURA DI PORTATA

DESCRIZIONE

Disinfezione con Acido Peracetico

La disinfezione delle acque, in uscita dal processo di depurazione, verrà effettuata con aggiunta di un reagente chimico: l'acido peracetico.

L'acido peracetico (PAA) si produce dalla reazione fra acqua ossigenata ed acido acetico; la soluzione disinfettante contiene il 10 - 15 % di prodotto chimico. Le reazioni di equilibrio e di decomposizione sono le seguenti:

- [1] $CH_3CO.OH + H_2O_2 \leftrightarrow CH_3CO.OOH + H_2O$
- [2] $CH_3CO.OOH + H_2O \rightarrow CH_3CO.OH + \frac{1}{2}O_2$
- $[3] H₂O₂ \rightarrow H₂O + ½ O₂$

Le reazioni del PAA non danno origine a sottoprodotti tossici.

Alcune prove su colture ortive come pomodoro, peperone, fagiolo, hanno mostrato che la tossicità del reattivo residuo per le colture stesse risultava nulla. La tecnologia prevista, basata sull'utilizzo di miscela stabilizzata dall'equilibrio di acido peracetico (principio attivo), perossido di idrogeno ed acido acetico, ha permesso, pur avvalendosi di una tecnica di impiego semplice, perché non richiede l'ausilio di sofisticate soluzioni impiantistiche, di ottenere risultati pienamente in linea con le aspettative di cui sopra.

Le specifiche proprietà chimico-batteriologiche dell'acido peracetico si riassumono come di seguito:

- è uno dei più potenti disinfettanti conosciuti;
- non sono mai stati osservati fenomeni di assuefazione;
- i prodotti di decomposizione (ossigeno e acido peracetico) sono perfettamente compatibili;
- non si verificano mai reazioni collaterali del prodotto o formazione di composti tossici e indesiderati;
- l'acido peracetico, ai dosaggi impiegati, non risulta fitotossico o ittiotossico.

Le sperimentazioni condotte su numerosi impianti, hanno confermato le eccellenti performances del prodotto sulla disinfezione spinta di acque reflue urbane. Il residuo di acido peracetico, ancora presente nella post-disinfezione, consente, inoltre, unitamente all'acqua ossigenata presente nella soluzione, di conferire un'ottima batteriostaticità al refluo anche dopo ore dal trattamento.

PROGETTO

I parametri di dimensionamento adottati in fase di progetto sono i seguenti:

PARAMETRI DI	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
PROGETTO			attuale	futuro	MISURA
Portata media	Q ₂₄	=	8	11,5	m³/h
Portata di pioggia al	Q_{mpb}	=	20	29	m³/h

biologico					
Portata di massima	Q _{max}	=	40	58	m³/h
pioggia					

Si impongono i seguenti parametri:

• Tempo di permanenza minimo a Q₂₄

 $T_{24} = 30 \text{ min}$ $T_{mpb} = 15 \text{ min}$

Tempo di permanenza minimo a Q_{mpb}

Da tali parametri si ricava:

Volume utile

$$Vol = \max(Q_{24} \times T_{24}; Q_{mpb} \times T_{mpb}) = 5 (7,3) \text{ m}^3$$

A seguito dei calcoli teorici sopra esposti si prevede una sezione di disinfezione avente le seguenti caratteristiche:

CARATTERISTICH	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
E CLORAZIONE			attuale	futuro	MISURA
Numero linee di	n		1	1	n°
presenti					
Volume singola	V	=	9,6	9,6	m^3
linea					
Volume totale	V_{TOT}	=	9,6	9,6	m^3
Tempo di	T ₂₄	=	72	50	min.
permanenza minimo					
a Q ₂₄					
Tempo di	T_{mpb}	=	29	20	min.
permanenza minimo	·				
a Q _{mpb}					
Tempo di	T _{max}	=	14,5	10	min.
permanenza minimo					
a Q _{max}					

Si prevede il trattamento di disinfezione mediante soluzione commerciale di acido peracetico al 14%. Il dosaggio medio previsto può essere assunto pari a 4 mg/l, pari a circa $\frac{4}{0.14}$ = 28,57 ml/m³ di PAA in soluzione commerciale

Da tale dosaggio si ricava:

$$Q_{PAA/24} = \frac{Q_{24} \times 21,43}{1000} = 0,2 (0,3) \text{ l/h}$$

$$Q_{PAA/24} = \frac{Q_{24} \times 21,43}{1000} = 0,2 (0,3) \text{ l/h}$$

$$Q_{PAA/mpb} = \frac{Q_{mpb} \times 21,43}{1000} = 0,6 (0,8) \text{ l/h}$$

Si prevede un serbatoio di stoccaggio di 1 m3 che consentirà un'autonomia di 183 (127) giorni.

Il dosaggio verrà effettuato da una pompa dosatrice in grado di erogare fino a circa 3 l/h in modo da coprire ampiamente il fabbisogno anche in caso di trattamento della 5Qm.

MISURA DI PORTATA

Si prevede l'installazione di un misuratore di portata ad ultrasuoni sullo stramazzo di uscita dalla clorazione.

Il misuratore sarà completo di indicatore, totalizzatore e trasmettitore con segnale 4-20 mA per consentire la regolazione automatica delle pompe dosatrici.

LOGICA DI FUNZIONAMENTO - STRUMENTAZIONE ED AUTOMAZIONE

Le pompe dosatrici saranno dotate di un regolatore elettronico incorporato che, in funzione del segnale 4-20 mA proveniente dal misuratore di portata del refluo trattato, modula la portata di reagente erogata. In tal modo, il consumo di reagente nelle diverse ore della giornata sarà sempre commisurato all'effetivo fabbisogno, ottenendo così un risparmio nei costi di gestione ed un'alta resa del processo.

MANUTENZIONE ED EMERGENZA

La presenza di una pompa dosatrice in posizione di riserva garantirà il funzionamento a regime anche in caso di guasto ad una pompa.

RICIRCOLO E SUPERO FANGHI

DESCRIZIONE - PROGETTO

RICIRCOLO

Come precedentemente calcolato (riferimento trattamenti biologici), per mantenere una concentrazione del fango nel biologico pari a 3,5 (4,5) kg/m³ è necessario un ricircolo pari a 6,2 (14,8) m³/h.

A fianco del sedimentatore verrà realizzato un pozzetto nel quale confluiranno i fanghi, dal fondo del sedimentatore stesso, tramite apposita tubazione. La tubazione terminerà nel pozzetto con una valvola telescopica che, opportunamente regolata, consentirà di controllare, al meglio, la portata estratta e la concentrazione.

Per ricircolare il fango, verranno installate 2 elettropompe sommergibili (di cui una di riserva) aventi ciascuna una portata di circa 15 m3/h.

SUPERO

Come calcolato nei capitoli precedenti , dal fondo del sedimentatore finale verrà estratta una quantità di fango di supero pari a 26,9 (41,7) kg/d che, alla concentrazione del c_r =0,8 %, ovvero 8 kg/m³, comporterà una portata volumetrica sarà pari a 3,4 (5,2) m³/d.

La produzione complessiva di fango di supero è riassunta nella tabella che segue:

PARAMETRI	SIMBOLO	VALORE attuale	VALORE futuro	UNITA' DI MISURA
Fango di supero in denitrificazione	X _{SD}	3,6	5,2	kg SST/d
Fango di supero in ossidazione - nitrificazione	X_{SN}	5,5	10,9	kg SST/d
Fango di supero da materiale inerte	X _{SIN}	11,1	16	kg SST/d
Fango di supero dalla de fosfatazione chimica	X _{SDEF}	6,7	9,6	kg SST/d
Fango totale di supero X _{SUP} = X _{SD} +X _{SN} +X _{SIN} +X _{SDEF}	X _{SUP}	26,9	41,7	kg SST/d

LOGICA DI FUNZIONAMENTO- STRUMENTAZIONE ED AUTOMAZIONE

Le pompe di ricircolo saranno asservite a regolatori di livello che ne determineranno l'attacca/stacca in funzione dell'effetivo livello di fanghi nel pozzetto.

L'estrazione dei fanghi di supero sarà effettuata mediante "spillamento" dal circuito di ricircolo tramite l'apertura di un'apposita valvola a saracinesca, che consentirà di convogliare i fanghi al serbatoio di accumulo e ispessimento.

Un misuratore magnetico di portata, con indicatore e totalizzatore, verrà inserito nella tubazione dei fanghi di ricircolo in modo che l'operatore, avendo il controllo della portata, potrà determinare i tempi giornalieri di apertura della valvola di spillamento.

MANUTENZIONE ED EMERGENZA

La presenza di una pompa di ricircolo in posizione di riserva garantirà il funzionamento a regime anche in caso di guasto ad una pompa. Le pompe saranno dotate di attrezzatura di sollevamento tale da permettere l'estrazione in caso di guasto.

ACCUMULO E ISPESSIMENTO FANGHI

DESCRIZIONE

L'ispessimento dei fanghi consente di ridurre il tenore di acqua nel fango con conseguente diminuzione del volume e del peso del fango da smaltire e quindi degli oneri di smaltimento. L'acqua che si estrae in tale fase (supernatante) viene convogliata, tramite apposita tubazione a gravità, a monte dei trattamenti depurativi, nel pozzetto di sollevamento iniziale.

PROGETTO

Per quanto già descritto nelle sezioni precedenti, all'ispessimento viene inviata un quantitativo giornaliero di fanghi di supero pari a 26,9 (41,7) kg/d che, alla concentrazione dello 0,8 %, , comporterà una portata volumetrica pari a 3,4 (5,2) m³/d.

Si impongono i seguenti parametri:

• Carico ponderale (flusso solido) del fango Fs=50 kgSST/m²*d

• Carico idraulico del fango v_I=20 m³/m²*d

Tempo di permanenza min.
 T_p= 2 d

Se ne ricava:

• Superficie utile minima S min = 0,5 (0,8)m²

• Volume utile min Vmin = $6.7 (10.4) \text{ m}^3$

Dai risultati dei calcoli sopra esposti si decide il seguente dimensionamento per la sezione di preispessimento e accumulo :

CARATTERISTICHE	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
PREISPESSITORE			attuale	futuro	MISURA
Numero linee presenti	n		1	1	n°
Tipologia		statico			
Diametro	D	II	2,2	2,2	m
Superficie utile	S	II	3,8	3,8	m^2
Altezza utile di fango	Н	II	2,8	2,8	m
Volume utile	V	=	10,6	10,6	m^3
Carico ponderale (flusso solido) del fango	Fs	II	7,1	11	kgSST/m ² *d
Carico idraulico del	VI	=	0,9	1,4	m ³ /m ² *d
fango					
Tempo di accumulo del	T _{acc.}	=	11,7	7,5	g
fango ispessito al 3%					

LOGICA DI FUNZIONAMENTO - STRUMENTAZIONE ED AUTOMAZIONE

Il volume utile consentirà un accumulo di fango ispessito al 3% circa di almeno una settimana anche nella configurazione futura. Con cadenza settimanale, quindi, il fango dovrà essere estratto, con apposita autobotte e trasportato ad un altro impianto attrezzato per la disidratazione o altri tipi di trattamenti e smaltimenti finali.

Una apposita valvola con attacco rapido per autobotte agevolerà le operazioni.

MANUTENZIONE ED EMERGENZA

Sono previsti due letti di essiccamento naturale come presidio d'emergenza nel caso in cui, momentaneamente, non si possa utilizzare il serbatoio di accumulo ed ispessimento.

LETTI DI EMERGENZA FANGHI

DESCRIZIONE

I letti di essiccamento costituiscono il sistema più semplice di disidratazione naturale dei fanghi. La caratteristica principale di tali impianti è il raggiungimento di basse umidità del fango e l'assenza di uso di reagenti chimici.

Attualmente, la tendenza è di utilizzarli come strutture ausiliarie di emergenza, di dimensioni complessive ridotte, da utilizzare nel caso di malfunzionamento e necessità di manutenzione di altre macchine.

PROGETTO

Nel progetto in esame il loro utilizzo è previsto solo in condizioni di emergenza.

Per quanto già descritto, nella sezione di "Accumulo e Ispessimento", ai letti di essiccamento viene inviata, in condizioni di emergenza, una miscela giornaliera di fanghi avente le seguenti caratteristiche:

PARAMETRI DI	SIMBOLO	RELAZIONE	VALORE	VALORE	UNITA' DI
PROGETTO			attuale	futuro	MISURA
Fango totale di supero	X _E		26,9	41,7	kg SST/g
Età del fango	θ_{E}		76,5	56	g
Portata fango di	Q _E		3,4	5,2	m³/g
supero					
Concentrazione fango	CE	=	8	8	kg/m³

Si impongono i seguenti parametri:

• Concentrazione media assunta nel letto

 $c_U = 10 \%$

• Tempo di permanenza del fango nel letto

 $T_p = 5 g$

dai quali si ricava:

Volume utile minimo

$$V = X_E \times T_n = 1,3 (2,1) \text{ m}^3$$

Si prevede l'esecuzione di 2 unità aventi le seguenti caratteristiche:

CARATTERISTICHE LETTO	SIMBOLO	RELAZIONE	VALORE attuale	VALORE futuro	UNITA' DI MISURA
Numero linee presenti	n		2	2	n°
Tipologia		rettangolare			
lato1	D	=	3	3	m
lato2	D	=	2	2	m
Altezza utile di fango	Н	=	0,4	0,4	m
Supeficie complessiva	S	=	12	12	m ²
Volume complessivo	V	=	4,8	4,8	m ³

FUNZIONAMENTO

I letti verranno alimentati da un sistema di tubazioni dotati di valvole d'intercettazione per ogni singolo letto. Il liquido surnatante prodotto verrà riportato in testa all'impianto.